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Abstract 

Plant phenotyping and agricultural optimization require efficient methods for analyzing 
morphological parameters from procedural models. L-systems provide powerful procedural 
modeling frameworks for plant development, but parameter optimization remains computationally 
expensive due to non-differentiable simulation processes and costly image-based comparison 
methods. Traditional approaches using genetic algorithms or direct parameter search are 
computationally expensive for real-time agricultural applications. This paper presents a novel 
phytomorphic surrogate neural network architecture designed to enable gradient-based 
optimization of L-system parameters for maize plant modeling. Our two-stage framework first 
trains a surrogate model to predict plant comparison costs derived from image-processing distance 
functions between real maize images and L-system simulations. The phytomorphic model 
incorporates three specialized modules: Structure Generation Network for parameter embedding 
that outputs a probabilistic synthetic plant coordinate system, Hungarian Assignment Network for 
deep analysis and structural matching at each growth stage, and Cost Aggregation Network for final 
cost prediction. Stage two employs optimizer neural networks trained via backpropagation on 
surrogate predictions to discover optimal L-system parameters for target plant phenotypes. 

Experimental validation on data from a single maize plant demonstrates that straight-forward 
surrogate neural networks cannot be leveraged for parameter optimization or produce biologically 
meaningful plant models. In contrast, the phytomorphic surrogate model enables genuine gradient-
based optimization, successfully discovering plausible L-system parameters that minimize image-
based structural dissimilarity to real plant phenotypes. The phytomorphic surrogate model is 
naturally robust to boundary exploitation during optimization, in contrast to simpler surrogate 
models, which tend to produce unrealistic parameter values at the boundaries of the search space. 
Overall, the surrogate-based neural optimization approach provides computational and 
interpretability benefits for plant phenotyping, with the phytomorphic surrogate model enabling 
gradient-based optimization of L-system parameters. 
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1. Introduction 

Accurately modeling plant structure is essential for understanding growth and phenotype in crops. I 
am addressing the challenge of optimizing the parameters of an L-system-based plant model to 
generate synthetic plant images that closely resemble real specimens. Gradient-based 
optimization, a powerful technique for parameter optimization, are traditionally unsuitable for 
these tasks as L-systems are discrete and non-differentiable. This creates a vast and complex 
parameter space where small changes can lead to abrupt changes, either minuscule or massive 
shifts in plant structure. 

The solution explored in this paper is the introduction of a neural network-based approach that 
enables gradient based optimization of L-system parameters through differentiable 
backpropagation. This approach supports rapid and meaningful optimization, providing new 
opportunities for plant modeling and agricultural applications. The issue is that the L-system plant 
generation is non-differentiable, meaning it cannot be utilized in the neural network approach. 
Instead, a differentiable surrogate, or replacement, is required.  

In this paper, I specifically explore the viability of using a surrogate neural network for this 
problem, since neural networks are differentiable, and suited for this type of prediction task. 
However, the discrete nature of the L-system generation requires attention to detail and spatial 
awareness. To overcome these limitations, I introduce a differentiable phytomorphic neural 
network surrogate that learns the relationships between L-system parameters and image similarity. 
I call this surrogate phytomorphic since its architecture and training are designed to explicitly 
capture the hierarchical and modular organization of plant structures, reflecting their biological 
principles such as branching, growth stages, and morphological variation. The idea is that this 
neural network will be able to optimize the L-system parameters utilizing differentiable processes, 
enabling gradient-based search for biologically plausible parameter sets. 
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2. Methods 

2.1 Parameter Space   

The optimization seeks to fit a set of model parameters, encompassing both scalar values and 
control points for parameterized functions. Below is the full parameter set, their types, and 
representations. 

The thirteen parameters used for L-system plant generation are as follows: 

1. MAX_PHYTOMERS, the number of phytomers (structural units) in the plant. 
2. PLASTOCHRON, interval between the initiation of phytomers or successive leaves. 
3. IntLen, scaling factor for internode length. 
4. IntWid, scaling factor for internode width. 
5. ExpIntRad, exponent that controls how internode radius changes along the plant axis. 
6. LeafLen, scaling factor for leaf length. 
7. LeafWid, scaling factor for leaf width 
8. ExpLeafWId, exponent that controls how leaf width changes along the leaf blade. 
9. PlantDownAng, angle that determines the downward orientation of the entire plant. 
10. PlantRollAng, angle that determines the rotational tilt of the plant structure. 
11. BrAngle, angle at which the branches emerge from the main stem. 
12. LEAF_BEN_SCALE, scaling factor for leaf bending. 
13. LEAF_TWIST_SCALE, scaling factor for leaf twisting.  

All model parameters except for MAX_PHYTOMERS are scalar-valued and continuous, taking real 
values within their specified ranges; MAX_PHYTOMERS is discrete and represented as an integer. 
The parameter space is dominated by continuous scalar-valued parameters, each varying smoothly 
within biologically plausible ranges. As a result, the optimization problem is essentially continuous 
and high-dimensional, with nonlinear interactions among parameters that give rise to complex 
emergent plant structures.  

 

2.2 L-System Plant Generation Process   

L-systems, or Lindenmayer systems, provide a formal grammar for simulating plant development 
through recursive production rules. Plant structures are generated by iteratively applying a set of 
rules that encode growth patterns and morphological differentiation. Each rule specifies how 
symbols in a string are replaced, with the resulting string representing the plant at a given 
developmental stage. 

Parameterization of the L-system is achieved by associating model parameters with rule execution 
and geometric transformations. The thirteen parameters described in Section 2.1 control the 
behaviours of the plant growth. During simulation, these parameters are input into the L-system, 
which generates a sequence of plant structures corresponding to different developmental stages. 

For each parameter set, the generated plant structure is rendered as a three-dimensional 
coordinate system representing key morphological features. This synthetic plant is then projected 
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into two-dimensional images using standardized imaging protocols. The imaging workflow ensures 
consistent viewpoints, lighting, and scale, enabling direct comparison between simulated plants 
and empirical images captured from real maize specimens. Images are processed to extract 
structural features, which serve as input for subsequent surrogate modeling and optimization 
stages. 

These plant simulations were implemented using the VLAB modelling environment, with plant 
structure generation performed by the L-System Plant Functional Generator (LPFG) software. VLAB 
provides an integrated platform for parameter management, model execution, visualization by 
turtle graphics. LPFG interprets the L-system grammar and renders the resulting plant structures in 
three dimensions.  

 

2.3 Baseline Surrogate Model Architectures   

To benchmark the effectiveness of the proposed phytomorphic surrogate neural network, two 
baseline surrogate models were implemented and evaluated. These models serve as reference 
points, enabling comparative analysis of surrogate-driven optimization strategies. By systematically 
comparing these architectures to the phytomorphic approach, we assess the impact of surrogate 
design choices on prediction accuracy, optimization performance, and biological plausibility of 
discovered plant models. 

Simple Surrogate Model: 

The simple surrogate model employs a three-layer feedforward neural network to approximate the 
mapping from L-system parameter vectors to a scalar cost value representing plant structure 
similarity. The network receives the full set of thirteen normalized model parameters as input and 
outputs a single predicted cost. Training proceeds in an online fashion: after each new sample 
(consisting of randomly generated parameters and their corresponding simulation-based cost), the 
model weights are immediately updated via backpropagation using mean squared error loss. This 
one-at-a-time training strategy enables the model to rapidly adapt to new data. The surrogate is 
purely data-driven and non-modular, with no explicit representation of internal plant structure or 
hierarchical parameter effects. 

Batch Training Surrogate Model: 

The batch training surrogate model shares the same neural network architecture as the simple 
surrogate: a feedforward network mapping normalized L-system parameters to a predicted cost 
value. The key distinction lies in its training procedure. Here, samples are accumulated in batches 
of 16 before the model weights are updated. After a batch is filled, the model undergoes one 
training step in which gradients are averaged across all samples in the batch, followed by a single 
optimizer update. This approach can improve training stability and robustness to outliers, as the 
effect of individual noisy samples is mitigated through batch aggregation. Like the simple 
surrogate, the batch model remains non-hierarchical and non-interpretable, lacking explicit 
structural awareness or multi-stage modeling capabilities. 
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2.4 Two-Stage Training and Optimization Framework 

The overall optimization procedure is organized into two sequential stages: surrogate model 
construction and surrogate-guided parameter optimization. This framework is designed to 
efficiently navigate the high-dimensional L-system parameter space while maintaining strong 
correspondence between simulated and empirical plant morphologies. 

2.4.1 Stage 1: Surrogate Model Training 

In the initial stage, a surrogate neural network is trained to approximate the mapping from L-
system parameters to a quantitative plant structure similarity cost. Training data are generated by 
random sampling of parameter vectors within biologically plausible bounds, followed by procedural 
plant simulation and evaluation using image-based distance metrics. 

This two-stage framework combines structurally aware surrogate modeling with efficient gradient-
based optimization, offering substantial advantages in biological fidelity over traditional black-box 
or purely data-driven approaches. 

Training Protocol: 
All surrogate models utilize normalization of both input parameters and cost outputs, with 
normalization statistics (mean and standard deviation) computed from a representative set of L-
system simulation outputs. During training, parameter vectors are normalized prior to input, and 
cost values are normalized as targets for regression. Model fitting is performed using supervised 
learning, where the objective is to minimize the mean squared error (MSE) between predicted and 
true normalized costs. For the simple and batch surrogate models, training proceeds either online 
(single-sample updates) or in batches (multi-sample gradient averaging), as outlined in Sections 
2.3.1 and 2.3.2. Validation is performed by evaluating prediction error on held-out parameter-cost 
pairs not used during training. 

Phytomorphic Surrogate Model Specifics: 
During surrogate model training, the phytomorphic neural network incorporates both normalized L-
system parameters and empirical plant feature coordinates across multiple developmental stages. 
These empirical features, extracted from manually annotated images of real maize plants over a 
27-day growth period, include the spatial positions of key morphological landmarks such as leaf 
tips, stem nodes, and branching points at different time points. By providing this dual input, 
synthetic model parameters and temporally indexed real-world structural data, the surrogate 
network learns to map parameter configurations not only to static plant forms, but also to growth 
trajectories that reflect realistic development. Specialized loss terms are applied during training to 
penalize discrepancies in landmark assignments and spatial arrangements throughout the growth 
sequence, guiding the network to produce predictions that are both structurally faithful and 
temporally consistent with true biological development. 

2.4.2 Stage 2: Surrogate-Guided Parameter Optimization 

Following surrogate model training, the second stage employs a neural optimizer network to 
discover L-system parameter sets that minimize the surrogate-predicted cost for a target plant 
phenotype. This approach leverages the differentiability of the surrogate model, enabling direct 
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gradient-based optimization in a domain where the underlying simulation process is non-
differentiable. 

Optimization Process: 

Optimization is performed via a custom neural network (OptimizerNet), which maps sampled latent 
vectors to candidate L-system parameter sets. The optimizer network consists of a sequence of 
fully connected layers with non-linear activations (ReLU) and a final Sigmoid activation, ensuring 
outputs are smoothly constrained within normalized parameter bounds. Each output is scaled to 
the biologically valid range for each parameter. 

For each surrogate model, the optimizer network is trained using stochastic gradient descent with 
the Adam optimizer, performing multiple optimization restarts to increase robustness against local 
minima. The network takes random input so it can generate a wide range of candidate parameter 
sets, optimizing them in parallel, encouraging exploration, and ultimately improving the chance of 
finding high-quality solutions for your plant model fitting task. 

A three-part composite loss function is employed to guide optimization: 

• Surrogate Cost Loss: The primary objective is the mean predicted cost from the surrogate 
model, evaluated for the current batch of parameters. 

• Boundary Penalty: A soft penalty term is added for parameter values that exceed 
biologically plausible bounds, calculated as the squared deviation from allowed parameter 
minima and maxima. This discourages solutions that exploit parameter space boundaries. 

• Diversity Loss: An auxiliary loss term encourages variance among parameters in the batch, 
helping avoid premature convergence and promoting exploration. 

The total loss is the weighted sum of these components, and gradients are propagated through the 
optimizer network and surrogate model via backpropagation. Learning rate scheduling is applied to 
facilitate convergence, and early stopping is triggered if no improvement in the loss is observed 
over a set number of iterations. 

Multi-Restart Strategy and Model Selection 

To further enhance solution quality, the optimization procedure includes multiple independent 
restarts for each surrogate model. Each restart initializes the optimizer network anew, with the 
best-performing parameter set (lowest surrogate-predicted cost) retained across runs. The 
optimizer network state corresponding to the best solution is saved for reproducibility. 

Validation and Biological Plausibility 

Upon completion of optimization for each surrogate model, the discovered parameter sets are 
exported and used to generate synthetic plant structures. These synthetic plants are quantitatively 
compared to real plant data using external cost metrics. Additional checks, including boundary 
constraint enforcement and plausibility regularization, are performed to ensure that optimized 
parameter sets yield biologically realistic plant morphologies, not merely cost-minimizing artifacts. 
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3. Phytomorphic Surrogate Model 

3.1 Motivation and Design Philosophy 

Procedural plant modeling, particularly with L-system parameterizations, presents unique 
challenges for surrogate-assisted optimization. Conventional surrogate models often lack structural 
awareness, treating parameter spaces as abstract vectors and ignoring the hierarchical, spatial, 
and developmental relationships inherent in plant phenotypes. This leads to several key 
limitations: surrogates may propose biologically implausible parameter values, are prone to 
boundary exploitation, and offer poor interpretability. 

The phytomorphic surrogate model is designed to address these shortcomings through the following 
principles: 

Structural Awareness and Biological Interpretability: 
The model architecture reflects key aspects of plant development, incorporating modules that 
correspond to distinct biological processes: structure generation, assignment, and cost aggregation. 
This modular organization enhances interpretability and allows the model to capture hierarchical 
and spatial relationships within plant forms. By explicitly modeling plant structure, the surrogate 
improves robustness to boundary exploitation and unrealistic solutions. 

Differentiability and Optimization Capability: 
All modules of the model are constructed to be differentiable, supporting gradient-based 
optimization techniques such as backpropagation. This enables efficient parameter discovery and 
facilitates navigation through the high-dimensional, nonlinear parameter space typical of L-system 
models. 

Modularity and Extensibility: 
The separation of the model into specialized components supports ablation studies and future 
extensions, such as adaptation to additional plant species or integration with further data 
modalities. Constraints and regularization are incorporated to maintain optimization within 
biologically meaningful bounds. 

The phytomorphic surrogate model is motivated by the need for optimization-aware surrogates that 
respect biological structure and deliver robust performance in complex plant modeling tasks. 

 

3.2 Overall Architecture 

The surrogate model is a modular neural network that transforms procedural plant parameters into 
a plant structure similarity cost. Its architecture is designed for interpretability, extensibility, and 
end-to-end differentiability, supporting robust training and optimization. The network consists of 
sequential submodules, structure generation, assignment, and cost aggregation, each passing 
formatted outputs to the next, enabling clear data flow and gradient propagation throughout the 
system. 
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Modules use neural network components suited to their data, such as fully connected layers for 
parameter transformations and attention mechanisms for feature matching. Standard deep learning 
practices, including activation functions, normalization, and dropout, are employed to ensure 
generalization and stability. Training is end-to-end via gradient-based optimization, with similarity 
cost as the primary loss. The modular design facilitates component replacement without disrupting 
overall performance. 

Implementation with modern deep learning frameworks ensures scalability, reproducibility, and 
integration with additional data modalities. Throughout, the model maintains clarity in data 
interfacing and consistent input/output handling, supporting both interpretability and future 
development. The following subsections describe each module in detail. 

 

3.2.1 Structure Generation Network 

The structure generation module constitutes the initial stage of the surrogate model pipeline. Its 
role is to transform the procedural plant parameters, which are encoded as a fixed-length vector 
according to the L-system formalism, into a geometric representation of plant morphology. 
Specifically, these parameters define the production rules, recursion depth, and segment lengths 
that would conventionally be used for explicit simulation of branching structures. 

In this implementation the module is realized as a multilayer perceptron. The input is a vector 
containing the L-system parameters, and this is processed by a sequence of fully connected layers. 
Each hidden layer applies a linear transformation followed by a rectified linear unit (ReLU) 
activation function. Batch normalization is performed after each hidden layer to promote stable 
and efficient training dynamics. The output of the structure generation module is a set of two-
dimensional coordinates representing the predicted locations of branch points and endpoints. 
These coordinates are standardized to a common reference frame so that they can be compared 
directly with reference plant structures in subsequent stages of the model. The module supports a 
variable number of predicted points by masking unused outputs and standardizing the active 
predictions. This masking is implemented by assigning a specific value to unused outputs and 
ensuring downstream modules ignore these during assignment and cost computation. 

During training, supervision is provided by comparing the predicted feature coordinates to 
empirically observed positions in a dataset of real or simulated plant structures. Gradients are 
propagated from the final cost output back through the assignment and cost aggregation modules, 
allowing the structure generation module to optimize its parameterization for accurate similarity 
prediction. This approach enables the surrogate model to rapidly infer plant morphology directly 
from procedural parameters, supporting efficient end-to-end optimization. The design of this 
module abstracts the process of procedural structure generation, embedding it within a 
differentiable neural network framework. This allows the entire surrogate model to remain 
compatible with gradient-based optimization and facilitates integration with subsequent modules 
for assignment and cost aggregation. 
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3.2.2 Hungarian Assignment Network 

The Hungarian Assignment Network is responsible for establishing optimal correspondences 
between predicted morphological features produced by the Structure Generation Network and 
reference features derived from empirical maize plant data. Its primary function is to enable a 
deep, quantitative comparison between simulated and real plant structures across all 
developmental stages. 

At each timepoint, the network receives sets of predicted and reference features, such as branch 
points or organ positions, and constructs a cost matrix where each entry encodes the Euclidean 
distance between a predicted feature and a reference feature. The core assignment step utilizes 
the Hungarian algorithm, which deterministically produces the globally optimal one-to-one pairing 
that minimizes the total assignment cost. Assignments arising from padded entries are 
systematically ignored, so only valid pairings contribute to the final evaluation. The output of the 
Hungarian Assignment Network is a set of matchings that represent the closest possible 
correspondence between simulated and real morphological features for each growth stage. These 
assignments are used to aggregate costs, yielding a similarity measure that serves as both an 
interpretable evaluation metric and a differentiable loss for neural network training. By structuring 
the assignment process to be compatible with gradient-based optimization, the module enables 
efficient learning and parameter discovery throughout the surrogate modeling pipeline. 

Through its design, the Hungarian Assignment Network supports robust and efficient comparison of 
plant structure and dynamics, ensures deterministic and interpretable assignments, and provides 
critical structural information for downstream cost aggregation and optimization. This approach 
facilitates biologically meaningful parameter optimization and advances the overall fidelity and 
reliability of the phytomorphic surrogate neural network framework. 

 

3.2.3 Cost Aggregation Network 

The cost aggregation network is responsible for converting a sequence of daily assignment costs, 
each representing the difference between synthetic and real plant structures on a given day, into a 
single value that summarizes the overall cost or fitness of a plant. This network enables the model 
to reason about plant performance over time in a way that is both learnable and efficient. 

Rather than using a simple sum or average, the network uses a stack of fully connected layers to 
learn how to combine the daily costs into a final scalar output. Specifically, the network transforms 
the input through a sequence of nonlinear operations: each layer learns weighted combinations of 
the daily values, and the nonlinearity (ReLU) allows the network to capture interactions between 
days and learn which days are most important for predicting overall cost. 

This approach allows the aggregation to be flexible: the network can learn to give more weight to 
critical time points or combine temporal patterns in complex ways if that improves prediction. The 
final output is a single number that represents the plant’s predicted cost, which is used for training 
and evaluation. 
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The main advantage of this design is that it does not assume any particular rule for how costs 
across days should be aggregated. Instead, it lets the model discover an effective strategy based on 
the data and the training objective. This is especially important in biological systems, where the 
importance of a particular day or developmental stage is not always known in advance and may 
depend on subtle interactions in the phenotype’s trajectory. 

Because the network is fully connected and not recurrent, it treats all days equally at the start of 
training but can learn to specialize as optimization proceeds. The model is simple and fast to train 
but could potentially be extended with temporal models if more complex patterns in the daily 
costs are found to be relevant. By using a learnable nonlinear transformation, the network can 
adaptively weight and combine costs from different days, giving more influence to days that are 
most predictive of plant fitness and modeling interactions between days if useful. This approach 
allows the model to discover the most effective aggregation strategy based on training data, rather 
than relying on manually defined rules. 
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4. Experimental Setup 

4.1 Overview 

This section details the experimental framework used to evaluate the proposed phytomorphic 
surrogate model and competing baseline approaches. The experiments are designed to assess 
model prediction accuracy, robustness against boundary exploitation, and effectiveness in 
parameter optimization tasks relevant to structural plant phenotyping. 

Synthetic plant structures for all experiments were generated using the LPFG L-system simulator 
and the University of Calgary’s VLAB platform, employing maize-specific grammars to ensure 
biological realism. 

We compare the phytomorphic surrogate against established surrogate architectures across 
multiple criteria, including cost prediction fidelity and optimization performance. Special emphasis 
is placed on analyzing the tendency of surrogate models to exploit parameter space boundaries, as 
well as the ability of the phytomorphic model to generate biologically plausible plant structures. 
Experimental protocols, evaluation metrics, and implementation details are described to ensure 
reproducibility and facilitate meaningful comparison. The subsequent sections specify the dataset, 
model training configurations, and the methodology used for quantitative analysis. 

 

4.2 Experimental Design 

The experimental setup enables direct comparison between multiple surrogate neural network 
models for hierarchical plant phenotyping. Each surrogate model is trained independently using a 
set of randomly generated samples, drawn from a consistent parameter distribution. Datasets for 
each model are generated separately, so while the sampling protocol is identical, the specific 
training samples vary between models. 

For each evaluation sample, a real plant structure is generated via VLAB based on the sampled 
parameters. The true cost is then computed by quantitatively comparing this simulated maize plant 
structure to actual measured plant data using a domain-specific cost function. The surrogate 
model’s predicted cost for the same parameter set is directly compared to this real cost, providing 
a measure of prediction fidelity. 

After training, each model is evaluated on a newly generated batch of random samples from the 
same underlying distribution. For each sample, both the predicted cost (from the model) and the 
true cost are computed and recorded in standardized CSV files. The evaluate_model.py script 
processes these results, automatically scanning the output directory for CSV files from different 
models. 

To ensure fair comparison, the minimum sample count across all result files is used for each model. 
Samples are grouped into 100 bins for robust averaging and visualization. For each model, key 
performance metrics are computed for the full set of groups (across all 100 bins), as well as 
specifically for the final bin. This allows assessment of both overall performance and end-state 
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behavior. Where available, additional metrics such as cost loss, total loss, and parameter 
sensitivity are included. 

The assessment protocol generates comprehensive visualizations (cost loss evolution, relative error 
evolution, accuracy curves, predicted versus true cost scatter plots, error distributions, and 
comparative bar plots for final performance) and statistical summaries (mean, median, and 
standard deviation of relative error, R² score, and convergence stability) for each model. These 
statistical summaries are primarily calculated using data from the final bin. 

All evaluation steps are applied uniformly to every model, ensuring quantitative and qualitative 
assessment of surrogate architectures under equivalent experimental conditions. 

 

4.3 Evaluation Metrics 

The following metrics are used to assess surrogate cost prediction performance where N is the 
number of evaluated samples: 

• Average Predicted Cost 
Mean value of surrogate model cost predictions across evaluation samples. 
Formula: 
Average Predicted Cost = (1/N) × Σ (Predicted Cost for each sample) 

• Average True Cost 
Mean value of ground truth costs for the same evaluation samples. 
Formula: 
Average True Cost = (1/N) × Σ (True Cost for each sample) 

• Average Relative Error 
Mean absolute relative error between predicted and true costs. 
Formula: 
Average Relative Error = (1/N) × Σ |(Predicted Cost – True Cost) / True Cost| 

• Accuracy Thresholds 
Fraction of samples with relative error below specified thresholds: 

o Accuracy < 1%: Proportion where Relative Error < 0.01 
o Accuracy < 5%: Proportion where Relative Error < 0.05 
o Accuracy < 10%: Proportion where Relative Error < 0.10 

• R² Score (Coefficient of Determination) 
Measures the proportion of variance in true cost explained by surrogate predictions. 
Formula: 
R² = 1 – [Σ(Predicted Cost – True Cost)² / Σ(True Cost – Average True Cost)²] 

• Statistical Summaries of Relative Error 
Mean, median, and standard deviation of the relative error distribution. 

• Convergence Stability 
Standard deviation of average cost loss over the last ten evaluation bins, indicating 
prediction stability near convergence. 
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• Parameter Sensitivity 
Absolute Pearson correlation between each input parameter and true cost, where 
applicable. 

All metrics are computed for evaluation samples grouped into bins, with special emphasis on final 
bin performance to assess end-state accuracy and stability. 

 

4.4 Training Procedures and Hyperparameters 

All surrogate models were implemented in Python using PyTorch. Training and evaluation were 
performed on randomly generated L-system parameter sets with corresponding cost values derived 
from plant structure comparisons. The following procedures and hyperparameters were used: 

• Model Architectures: 

o The simple and batch surrogate models use a three-layer feedforward neural network 
with an input dimension of 13 (representing L-system parameters), two hidden layers 
of 64 units each with ReLU activation, and a single output neuron for cost prediction. 

o The hierarchical (phytomorphic) surrogate model consists of modular sub-networks for 
structure generation, Hungarian assignment, and cost aggregation. The input 
dimension is 13; hidden layers range from 64 to 256 units; the maximum number of 
plant structure points is set to 50; cost aggregation is performed over up to 27 days. 

• Normalization: 

o Input parameters and cost outputs are normalized using statistics computed from 100 
randomly sampled L-system simulations prior to training for each model. 

• Training Protocol: 

o Each model is trained independently for n samples, as specified by the user. 
o The loss function is mean squared error (MSE) for cost prediction. The hierarchical 

model also includes regularization terms and a multi-component loss. 
o The Adam optimizer is used for all models. 
o The learning rate is 0.001 for the simple and batch surrogate models, and 0.0001 for 

the hierarchical surrogate model. 
o The batch size is 16 for batch models, while the simple surrogate model uses online 

training (weight updates after each sample). The hierarchical model also uses single-
sample updates. 

o There is no explicit early stopping or learning rate decay; training runs for a fixed 
number of samples. 

o Model weights are saved to disk after training is complete. 

• Evaluation: 

o At each training step, predictions and losses are logged to CSV files. 
o Metrics such as average loss, relative error, and accuracy at thresholds of less than 

1%, 5%, and 10% are tracked during training. 
o Surrogate models are evaluated on held-out random samples for final performance 

comparison. 
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• Other Details: 

o Training progress, accuracy, and estimated time remaining are printed at each step. 
o Models that fail to converge or produce invalid cost predictions are excluded from 

analysis. 

This standardized protocol ensures direct and reproducible comparison of surrogate architectures. 
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5. Results 

This section presents the experimental findings in the two main domains of this paper: (1) 
parameter optimization for image-matching L-system maize models to real maize plant images, and 
(2) evaluation of the phytomorphic surrogate neural network approach for cost prediction and 
optimization robustness in comparison to the benchmark surrogate models. 

5.1 Surrogate Cost Prediction Performance Analysis 

This section assesses how accurately each of the three surrogate models predicts the image-based 
cost function given L-system maize parameters. 

All surrogate models were trained and validated on 480,000 held-out samples, with key metrics 
including the average relative error (%), R2 score, and accuracy thresholds. Table 5.1 summarizes 
the results found in the last 4,800 samples of training: 

Model Acc 
<1% 

Acc 
<5% 

Mean 
Rel 
Error 

Median 
Rel 
Error 

R2 

Score 
Convergence 
Stability 

Benchmark1 74.3% 99.7% 0.0077 0.0054 0.9911 0.000223 
Benchmark2 67.4% 99.7% 0.0088 0.0066 0.9887 0.000162 
Phytomorph 71.8% 99.7% 0.0081 0.0057 0.9896 0.000254 

Table 5.1 

All models exhibit strong performance, with Benchmark1 attaining the highest accuracy at the 
strictest threshold (<1%), the lowest mean and median relative errors, and the highest R² score. 
Benchmark2 follows closely, while the Phytomorphic surrogate maintains competitive accuracy, 
particularly at the <5% threshold, matching the benchmarks at 99.7%. Although the phytomorphic’s 
accuracy at <1% is slightly below Benchmark1, it demonstrates robust convergence stability 
comparable to the benchmarks. These results provide a solid basis for further analysis of boundary 
exploitation and optimization robustness. 

 

5.2 Surrogate Parameter Optimization Performance Analysis 

This section assesses how each of the three surrogate models performs in the optimizer network. 
Notably, only the phytomorphic surrogate was successful in producing realistic and biologically 
plausible solutions; both benchmark surrogates (simple and batch) exhibited severe boundary 
exploitation, resulting in implausible parameter sets and cost values. 

Each optimizer network trained with 30 restarts, with an early stopping functionality if a local 
minimum is found. Below is the best matching plant each surrogate can provide under the 
optimizer neural network, as well as the correct number of phytomers and the recorded number of 
phytomers. 

Model True 
Cost 

Pred 
Cost 

Real 
Phytomers 

Predicted 
Phytomers 
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Benchmark1 59626 -65.7 9 8 
Benchmark2 59543 0.4 9 8 
Phytomorph 50097 52744 9 10 

Table 5.2 

As seen above, only the phytomorphic surrogate model functioned when being used in the 
optimizer network. The phytomorphic model was able to find parameters that led to an L-system 
generating with 50097 cost, while keeping a realistic predicted cost itself. 

 

5.3 Boundary Exploitation: Investigation and Evidence 

Comprehensive analysis of the optimized parameter sets generated by benchmark surrogate models 
reveals a pervasive boundary exploitation phenomenon. Across all 30 optimization restarts for each 
benchmark surrogate, 100% of the final parameters were located almost exactly at their minimum 
or maximum allowable values, with no exceptions. The consistent pattern strongly indicates that 
the cost landscapes shaped by the benchmark surrogates incentivize boundary solutions, rather 
than biologically plausible interior ones. 
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6. Discussion 

6.1 Core Contribution: Neural Networks for Direct Parameter Optimization 

This study establishes a method by which neural networks act as powerful surrogates for direct 
parameter optimization in complex, image-driven modeling tasks. By leveraging differentiable 
architectures, the approach enables efficient search for model parameters that yield realistic and 
biologically plausible outcomes, advancing both theory and practice in surrogate-based 
optimization. 

6.1.1 Theoretical Innovation and Differentiability 

A central theoretical contribution is the development of differentiable neural surrogates capable of 
emulating the cost landscape for L-system modelling and image matching. Unlike traditional 
surrogate models, which lack gradient information or structural flexibility, the proposed neural 
architectures facilitate gradient-based optimization. The phytomorphic surrogate extends this 
framework through structural awareness and modularity, introducing domain-specific inductive 
biases that improve the alignment between surrogate predictions and true process dynamics. 

6.1.2 Empirical Effectiveness in Optimization Tasks 

Empirical evaluations demonstrate that, while all surrogate models achieve high predictive 
accuracy on held-out cost data, only the phytomorphic surrogate consistently produces parameter 
sets that are both plausible and robust. Benchmark models (simple and batch) suffer from boundary 
exploitation, converging to degenerate solutions that lack biological realism. In contrast, the 
phytomorphic surrogate drives optimization toward interior solutions, maintaining meaningful 
coverage of the parameter space and realistic cost values. These results confirm the practical 
benefit of architectural innovations tailored to the underlying process. 

6.1.3 Practical and Cross-Domain Applications 

The approach outlined here is broadly applicable beyond the domain of plant morphology. Neural 
surrogates for direct parameter optimization can be adapted to diverse scientific and engineering 
contexts where complex generative models must be fit to real-world data, such as materials 
design, medical image analysis, or physics-based simulation. The demonstrated integration of 
differentiability, modularity, and domain awareness provides a generalizable blueprint for robust 
surrogate model development across disciplines. 

 

6.2 Surrogate and Phytomorphic Model Architecture Insights 

6.2.1 Comparative Performance Across Architectures 

The comparative evaluation of surrogate architectures reveals clear distinctions in optimization 
outcomes. Standard surrogates demonstrate high predictive accuracy in cost estimation but 
consistently fail to produce biologically plausible parameter sets when used for derivative-based 
optimization. In contrast, the phytomorphic surrogate model integrates domain-specific structural 
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awareness, enabling it to generate robust, realistic solutions that avoid degenerate edge cases. 
These results underscore the importance of architectural design in shaping the quality and 
reliability of optimization processes. 

6.2.2 Boundary Effects and Mitigation Strategies 

A recurring challenge in surrogate-based optimization is boundary exploitation, where optimized 
parameter sets converge at the limits of their allowable ranges. Benchmark surrogates were 
particularly susceptible to this effect, resulting in implausible solutions and artificially low-cost 
values. The phytomorphic surrogate mitigates these issues through modularity and structural 
priors, which reshape the cost landscape to discourage boundary clustering. This architectural 
innovation demonstrates the value of embedding domain knowledge to enhance the robustness of 
neural networks and surrogate models. 

6.2.3 Biological Realism and Optimization Advantages 

Biologically inspired surrogate designs offer tangible advantages in both process emulation and 
optimization fidelity. The phytomorphic surrogate’s incorporation of plant-specific structural 
features leads to parameter sets that more accurately reflect true biological variation, as 
evidenced by interior coverage of the search space and realistic plant morphologies. This 
improvement in biological realism translates directly into more meaningful and credible 
optimization outcomes. 

6.2.4 Design Guidelines for Optimization-Oriented Surrogates 

The findings suggest several actionable principles for future surrogate model development. First, 
incorporating domain knowledge and structural awareness is critical to prevent boundary 
exploitation and improve solution plausibility. Second, modular architectures support flexible 
adaptation to new problem contexts and facilitate integration of specialized inductive biases. 
Finally, rigorous validation against real-world data should accompany surrogate model design to 
ensure both predictive accuracy and biological realism. 

6.2.5 Architectural Integration and Innovation 

Neural surrogate frameworks provide a versatile foundation for integrating a wide range of 
architectural approaches. The success of the phytomorphic surrogate illustrates how modularity, 
differentiability, and domain-specific priors can be combined to advance both optimization and 
process emulation. Future innovation will likely involve deeper integration of neural and symbolic 
modeling techniques, enabling broader applicability and enhanced interpretability in complex 
scientific domains. 

 

6.3 Limitations and Challenges 

6.3.1 Persistent Boundary Exploitation Issues 

Despite architectural advances, persistent boundary exploitation remains a noteworthy challenge in 
surrogate-based optimization. While the phytomorphic surrogate model substantially mitigates 
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clustering of parameters at the limits of their allowable ranges, certain optimization scenarios 
could still yield edge-convergent solutions, especially under extreme or poorly constrained search 
spaces. This underscores the need for further research into regularization strategies, landscape 
smoothing, and advanced constraints to ensure consistently plausible parameter distributions. 

6.3.2 Generalization and Robustness Constraints 

Another limitation involves the generalization capacity and robustness of surrogate models. The 
empirical results demonstrate high accuracy and biological realism within the tested dataset; 
however, it is unclear how well these models extrapolate to novel parameter regimes, unseen plant 
forms, or different environmental conditions. Overfitting to the training data, limited coverage of 
the morphological diversity, and sensitivity to noise or outliers may restrict broader applicability. 
Future work should include cross-validation with more diverse datasets and systematic robustness 
testing to better characterize generalization limits. 

6.3.3 Temporal Growth Function in Phytomorphic Model 

A specific challenge for the phytomorphic surrogate lies in the accurate modeling of temporal 
growth dynamics. While the current implementation emulates static plant morphologies 
effectively, it does not fully capture the time-evolving nature of plant development. Incorporating 
explicit temporal growth functions or spatiotemporal modeling frameworks could substantially 
enhance biological realism and predictive utility. This represents a key direction for future 
refinement and application, particularly for studies interested in developmental processes or 
longitudinal data. 
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7. Conclusion 

This work introduces a novel framework for gradient-based optimization of procedural plant 
models, addressing longstanding challenges in parameter fitting for L-system representations of 
maize. By developing the phytomorphic surrogate neural network, we enable direct, differentiable 
optimization of high-dimensional, non-differentiable plant model parameters, replacing traditional 
genetic algorithms and direct search methods with efficient, interpretable neural surrogates. The 
modular architecture embeds biological priors and structural awareness, ensuring robust and 
realistic plant phenotype matching. 

Empirical validation demonstrates two key advances. First, our surrogate-based optimization 
approach successfully discovers plausible L-system parameters that minimize structural 
dissimilarity to real maize phenotypes, overcoming the computational cost and boundary 
exploitation issues inherent in simpler surrogate models. Second, the phytomorphic surrogate 
model achieves biologically meaningful interior solutions, maintaining high predictive accuracy 
while reliably avoiding degenerate parameter sets at the boundaries of the search space. 

Together, these contributions advance the capabilities of surrogate modeling for plant phenotyping 
and procedural model fitting, offering both computational efficiency and enhanced biological 
realism. The framework is extensible to broader agricultural optimization problems and other 
domains where complex generative models are used. Future work may explore dynamic growth 
modeling, generalization to other species, and integration of environmental variables, further 
expanding the scope and impact of this approach. 
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7.3 Codebase 

All source code for the phytomorphic surrogate neural network, baseline surrogate models, training 
scripts, and evaluation procedures is available at: 

https://github.com/bushwill/Surrogate-Neural-Network 

The repository includes: 

• Implementation of the hierarchical phytomorphic surrogate neural network architecture. 

• Scripts for L-system plant simulation, data preprocessing, and cost calculation. 

• Training and evaluation workflows for all models discussed in this paper. 

Access to the code ensures full reproducibility of the results presented and enables extension of 
the methods to new datasets or plant species. 

https://github.com/bushwill/Surrogate-Neural-Network

